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ABSTRACT

In this paper, we present a new technique to remove specular effects from the photo-
grammetric results in a automatic photogrammetric workflow for Architectural 
Heritage (AH) 3D model construction. Our solution provides a new reconstruction 
pipeline completely integrated in the automatic photogrammetric pipeline re-using 
existing data to arrange new results. The process of acquisition of the images to 
get the finished 3D model is therefore unique and the process for acquiring and 
visualizing the correct perceived color is fully integrated with the process of shape 
capture. Overall, the method does not require specific technical knowledge, being 
therefore relatively easy to use, and it can be used over many different urban 
settings and contexts. The proposed methodology is a high-level image-processing 
algorithm. As such, it uses several lower-level methods for its building blocks. We 
consider these methods as black boxes, and we explain below their input, output 
and purpose. 
We demonstrated the efficiency of our method using case study of our work in many 
cases of the ca 43 km of historical porticoes system in Bologna, Italy, a superset of 
the family of AH objects that it belongs to.
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1. INTRODUCTION

In the field of Architectural Heritage (AH), 
3D model construction and visualization, 
using techniques based on photogrammetric 
techniques, is increasingly becoming a key 
approach, ensuring ease of use and efficient 
results, even for non-professional [1]. Significant 
progress has been recently achieved in the 
areas of efficient algorithms for scalable image 
matching [2], large-scale bundle adjustment 
[3], and in generating dense and well-
calibrated clouds of point as output [4], the core 
components of the photogrammetric pipeline. 
As a result, it is nowadays possible to easily 
reconstruct large scenes from image sequences 
and at low cost [5].
The topic of AH 3D reconstruction and 
architectural modeling from images, in 
particular, has received considerable attention in 
the last decade [6], and also our research group 
developed in this area an efficient pipeline based 
on automatic photogrammetry to integrate 
accurate shape and color capture, reproduction 
and visualization using web-based real-time 
rendering techniques in [7].
An unsolved issue of our pipeline concerns 
the problems arising from specular reflections 
effects. The appearance of specular reflections 
is inevitable in AH urban environment, due to 
the characteristics of materials existing in real 
world. These effects typically appear in areas 
with polished floors (i.e. marble), or in presence 
of windows or shop windows, determining 
scattering effects in geometry and incorrect 
values of diffuse reflectance.
Specular reflection are critical flaws, affecting 
image quality and, then, the final results of 
each photogrammetric pipeline. Specifically, 
dense point clouds generation and faithful 
color reproduction are task having difficulties 
if specular reflections exist in the input images. 
E.g. acquired textures with the presence of 
highlights produce distinct loses of details. 
These problems are generally a side effect of the 
generally shared assumption by computational 
approaches that scene surfaces are composed 
of pure diffuse reflection. However, for a wide 
variety of inhomogeneous materials in real world, 
the reflection includes both diffuse and specular 
components. Hence, algorithms that are usually 
based on an ideal Lambertian can completely 
fail when facing the specular reflection. So far, 
specularity removal methods need to be used 
in order to improve the photoconsistency based 
image-to-surface registration as well as for 3D 
model reconstruction of surfaces with specular 
reflection component.
Diffuse and specular reflections are produced 
by different physical interactions between light 
and object surfaces. According to the neutral 

interface reflection model [8], the color of the 
specular reflection is identical to that of the 
illumination, while the color of the diffuse 
reflection is the intrinsic characteristic of the 
object. With these assumptions, specularity 
removal can be viewed as the general problem 
of extracting information contained in an image 
and transforming it into certain meaningful 
representation. This representation is able to 
describe the intrinsic properties of the input 
image, and it is well known under the name of 
intrinsic images introduced by [9]. 
Several characteristics of the original input 
image can be defined as intrinsic images: 
illumination color and geometry, surface 
reflectance and geometry and view-point [10]. 
In our case, the two intrinsic characteristics 
that must be extracted are the diffuse and the 
specular reflection components. We reuse the 
diffuse reflection and we discard the specular 
one.
In this paper, we present a new technique 
to remove specular effects from the 
photogrammetric results. Our solution provides 
a new reconstruction pipeline completely 
integrated in the automatic photogrammetric 
pipeline reusing existing data to arrange new 
results. The process of acquisition of the images 
to get the finished 3D model is therefore unique 
and the process for acquiring and visualizing 
the correct perceived color is fully integrated 
with the process of shape capture. Overall, 
the method does not require specific technical 
knowledge, being therefore relatively easy to 
use, and it can be used over many different 
urban settings and contexts. Our processing 
is semi-automatic and use the photographs 
employed in the 3D textured model construction 
using a standard photogrammetric pipeline.
From a functional point of view is part of 
the image pre-processing phase. Image 
pre-processing methods are fundamental 
to improve the image quality for successful 
photogrammetric processing. Indeed, being the 
image processing fully automated, the quality of 
the input images, in terms of radiometric quality 
as well as network geometry, is fundamental 
for a successful 3D reconstruction. In detail our 
solution exploits two existing steps - (a) image 
color balance and exposure compensation, and 
(b) image denoising - introducing a new extra-
step (c) image highlight removal. This last is the 
key step of the pipeline and represents the main 
novelty.
To enable this last new processing, the central 
idea is the use of SIFT Flow algorithm, a 
technique based on dense optical flow research 
started more than 30 years ago with the work of 
Horn and Schunck [11]. We refer to publications 
like [12, 13, 14] for a detailed overview of optical 
flow methods and the general principles behind it.
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SIFT Flow technique align two images sharing 
similar scene characteristics by matching 
SIFT descriptors instead of raw pixels. SIFT 
Flow allows matching densely sampled SIFT 
features between two images, while preserving 
spatial discontinuities [15], to align the images 
such that a pixel-wise comparison can be 
made across the input set. Gradients with 
variation across the image set are assumed to 
belong to the reflected scenes while constant 
gradients are assumed to belong to the desired 

background scene. By correctly labeling 
gradients belonging to reflection or background, 
the background scene can be separated from 
the reflection interference. Unlike previous 
approaches that exploit motion, our approach 
does not make any assumptions regarding the 
background or reflected scenes geometry, nor 
requires the reflection to be static. Our specular 
removal technique is based on [16], but further 
customizations were introduced and finally 
the technique was integrated in our automatic 

Figure 1 - Typical problems of the 
automatic photogrammetry pipeline in 
presence of specular effects
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photogrammetric pipeline (Figure 2). We tested 
our method using as case study example from 
a building with arcades in Bologna, a superset 
of our field of interest because it presents all the 
problems to which we want give solution.
 
2. PROBLEM CHARACTERIZATION 
    & RELATED WORKS  
    
Figure 3 shows images taken under the porch 
of a building. In these images, we can see two 
of the most typical and frequent problems that 
appear in real-world 3D shape and color capture 
of urban systems related to specular reflections 
problems:

a. Polished pavements presenting 
highlights caused by different light 
sources;
b. A scene image behind a glass pane. 
This is the case of ‘shop window’, where 
one takes a photograph of an object 
behind a window. The glass will produce 
an unwanted layer of reflection in the 
final image. The reflection from the glass 
interferes with the view of the interior of 
the shop behind the shield.

In the determination of the diffuse reflection 
surfaces, traditionally these two phenomena 
are treated as different problems, one known 
as specular removal and the second as layers 
separation. In this paper, we present a technique 
that aims to model the two phenomena as 
two sides of the same coin. In our approach, 
specular and diffuse reflections are assimilated 
to different layers. In this way, the two problems 
are brought back to the solution of a single 
problem known as separation layers, where the 
captured image   is a linear combination of a 
reflection layer    and the desired background 
scene,     , as follows:

The goal of reflection removal is to separate IB 
and IR from an input image I as shown in Figure 
10. Three reasons led to this choice:

- The approach allows the development 
of a solution completely integrated in the 
existing pipeline, easy to implement, and 
completely automatic;
- The histogram of the tonal distribution 
of images with specular effects (see 
Figure 4) does not show the typical 
behavior of images with highlights 
where data appears on the right side. 
For this reason, the results obtained 
through image processing techniques, 
or acquiring High Dynamic Range (HDR) 
images, in the elimination of specular 
reflections, are unsatisfactory;
- Recently, a great effort of Computer 
Vision community was devoted to the 
pro-gress of efficient techniques of layer 
separation. Separating illuminant and 
re-flection is a well-known problem as 
demonstrated by Marc Ebner works [17]. 
Several solutions well fit the boundaries 
of our problems and establish a solid 
ground on which to develop a specific 
appropriate solution.

In [18] is presented a complete survey of 
specular removal techniques, with a useful 
classification to select a proper method for 
a specific application. The survey classi-fies 
methods for separating reflection components 
into two categories by the number of images 
used: Multi-image or Single-image methods.
The first category uses multiple images taken 
under specific conditions (e.g. view-point, 
lighting direction, etc.) and benefits from the fact 
that for varying viewing directions, the diffuse 
and specular reflections behave differently. The 
techniques are based on histogram methods 
[19], high-low frequency separation [20], 
multi-baseline-stereo [21], deriving intrinsic 
images from image sequences with illumination 
changes [22], color and polarization methods 
[23] and multi-flash methods [24]. All these 

Figure 2 - Our automatic 
photogrammetry pipeline with the 
specular removal phase on orange 
background.

(1)
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approaches can be further categorized as Local 
or Global depending on how the information is 
used.
Highlight removal using a single image is 
generally much more challenging. The single-
image approaches are based on using color 
reflection model [25], 2D diagram approach 
[26], use of specular-free image [27], Partial 
Differential Equation (PDE) approach [28], use of 
color information and classifier [29], separation 
of highlight reflections on textured surfaces 
[30], Fresnel methods [31]. In the single-image 
category, there can be further two categories 
aiming to identify and separate diffuse color 
pixels: Neighborhood analysis, Color Space 
analysis.
In case of first category, neighborhood pixels are 
examined to infer the diffuse information usually 
by propagating from outside the highlight 
towards the inside. However, discontinuities 
in surface colors can make difficult for diffuse 
information to be accurately transferred 
[30]. The second category is based on color 
distributions to distinguish between diffuse and 
specular components. However, many factors 
such as image noise or color blending at edges 
can cause cluttering in color space, which can 
impair such approaches.
As mentioned earlier, the problem is highly 
ill-posed, therefore these approaches are not 
free from limitations. For example, in [25] color 
clustering is very sensitive to noise. Polarization 

Figure 3 - Typical reflection problems 
in the urban context: shop windows 
and specular reflections on the floor.

Figure 4 – Figure 3 images histogram.

methods like [23] are, at the moment, very 
promising tools also in our field of application 
[32], but this paper would like to present a 
different technique. Polarimetric techniques, 
in effect, require a rotating polarization filter 
in front of the main capture camera. However, 
this aspect of capture can be automated, 
even on a single camera, and excellent data 
quality. The method proposed in [30] uses color 
segmentation and polarization filter to remove 
specular effect retaining geometrical information 
but the color value is shifted. The method in [23] 
uses pixel level dichromatic reflection model, 
however, both this and [31] needs an estimation 
of illuminant source.
Following [18] consideration and experimentation 
results, and a series of tests carried out by us 
to verify the suitability of specific algorithms 
to our cases, we could state that although 
the currently available methods achieve 
good component separation results, they are 
limited by the conditions of their applicability. 
In particular, most of the techniques rely on 
a specific reflection model and assume that 
the specular reflectance varies insignificantly 
with wavelength, which means that its color 
is essentially that of the light source. This 
assumption, together with their sensitivity to the 
noise, reduces the range of applications where 
these methods can be used. Furthermore, most 
part of these algorithms presents strong light 
requirement. Unfortunately, we are in the case 

Table 2 - Mean scores and standard 
deviations of the 116 participants with 
regard to the board “Shot”

Table 3 - Mean scores and standard 
deviations of the 116 participants with 
regard to the board “Bench”
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of uncontrolled light, with materials existing in 
real world, as well as areas with polished floors 
(i.e. marble), or in presence of windows or shop 
windows, that limits a lot the number of solution 
available.
Finally, the number of effects that these algorithms 
are able to manage are limited compared to the 
complexity of the interactions in the real world. 
Mainly, specular regions are generally composed 
of a core part and extended specular region. The 
core part has lost information while extended 
region has partial image information. Most of the 
work available in literature address the removal 
of a single specular region, however, the removal 
of both regions individually retaining maximum 
possible information is not properly discussed 
especially for large specular regions.
This last problem appears to be crucial in our 
case. Effective solutions to mitigate it are 
essentially based on manual segmentation, a 
long, tedious and an easily error-prone process.
From the point of view of the algorithm we 
focused, initially, on single images techniques, 
based on Shafer [33] dichromatic reflection 
model, starting from specular-free image 
techniques [30, 34, 35]. These methods are 
based on the idea of initially generating a 
pseudo-diffuse component image. This provides 
a partial separation of the specular component, 

which is later used to complete the reflection 
component separation of the original image. 
The pseudo-diffuse component image is called 
Specular-Free Image because it is essentially a 
specularity invariant representation of the input 
image. We tried also, remaining in the field of 
single-images and di-chromatic reflection 
model techniques, PDE-based which iteratively 
erodes the specular channel in the SUV color 
space [28], error analysis of chromaticity and 
appropriate selection of body color for each 
pixel [35], bilateral filtering [36], and intensity 
ratio [37] methods. Figure 5 shows some of 
results obtained using these techniques. We 
experimented both default parameters and 
different values to better fit our case study. 
We could see that the results were completely 
unsatisfying.
A more general approach is introduced in [38] to 
extract automatically two layers from an image 
where one layer is smoother than the other. This 
problem arises not only in reflection removal 
but also in intrinsic image decomposition. 
Authors introduce a strategy that regularizes 
the gradients of the two layers such that one 
has a long tail distribution and the other a short 
tail distribution. They formulate the problem 
in a probabilistic framework and describe an 
optimization scheme to solve this regularization 

Figure 5 - Results of single images 
techniques of specular removal, 
based on dichromatic reflection 
model. All the algorithms are tested 
on the original configuration of 
values. Images represent the diffuse 
component. 
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with only a few iterations. A challenging issue is 
that if the assumption that the two layer have 
different smoothness is violated, the methods 
will fail to correctly separate the layers. Figure 
6 shows that this failure appears systematically 
in our case.
We tried to enhance the techniques based 
on the use of a single image introducing a 
preprocessing where the image is automatically 
segmented to better find the highlighted area. 
In a second step previous illustrated techniques 
are used to remove the specular reflections, 
restoring the apparent color. 
We focused on color image segmentation 
techniques since more utilizable than gray scale 
image segmentation because of their capability 
to enhance the image analysis process thereby 
improving the segmentation result.
In color image segmentation, firstly choosing a 
proper color space is an important issue [39]. 
Lab and HSV are the two most frequently chosen 
color spaces. Following results of [40] we have 
chosen Lab color space.
[41] provides an excellent reference for our work 
describing accurately color image segmentation 
techniques, and giving a classification useful to 
correctly analyze and implement segmentation 
algorithm in an automatic workflow. As in the 
context of color imagery, segmentation is an 
ill-defined problem with no perfect solution, we 
experimented techniques from both the sides of 
the classification purposed by [36]:

•  spatially blind methods 
•  spatially guided methods.

Spatially blind approaches perform segmentation 
in certain attribute/feature spaces. Popular 
segmentation techniques that fall within the 
notion of being spatially blind involve clustering 
and histogram thresholding.
Spatially approaches are guided by spatial 
relationships of pixels for segmentation. Their 
primary objective is to form pixel groupings that 
are compact or homogeneous from a spatial 
standpoint, irrespective of their relationships in 
specific feature spaces. The use of region and 

edge information explicitly or in an integrated 
framework are the widely-accepted main 
solutions.
Between spatially blind approaches we 
focused on clustering based segmentation 
approach, appearing more suitable with our 
goal to automatically select and segment 
the highlighted areas. In its simplest form, 
clustering is a spatially blind technique wherein 
the image data is viewed as a point cloud on 
a one-dimensional (1-D) gray scale axis or in a 
3-D color space depending on the image type. 
The essence of a typical clustering protocol is to 
analyze this gray/color intensity point cloud and 
to partition it, using predefined metrics/objective 
functions to identify meaningful pixel groupings 
also known as classes or clusters. Furthermore, 
the clustering process is done such that, when 
complete, the pixel data within a specific class 
possess, in general, a high degree of similarity 
while the data between classes has low affinity.
In detail, we experimented the K-Means 
clustering, an algorithm aiming to optimize the 
partitioning decisions based on a user-defined 
initial set of clusters that is updat-ed after each 
iteration. The K-Means algorithm, in particular, 
partitions a set of n-pixels into K clusters by 
minimizing an objective function. Main limitations 
concern selecting/initialization of number of 
clusters and the fact that during the space 
partitioning process the algorithm does not take 
into consideration the local connections between 
the data points (color components of each pixel) 
and its neighbors. This fact will restrict the 
application of clustering algorithms to complex 
color-textured images since the segmented 
output will be over-segmented. We implemented 
the version of the algorithm called the ‘filtering 
algorithm’ [42], that use a k-dimensional (kd) tree 
representation of the image data. The biggest 
advantage of this approach was that, since the 
kd-tree representation was formed from the 
original data rather than from the computed 
centers, it did not mandate an update in its 
structure for all iterations, in contrast to the 
conventional K-Means architecture.
Spatially guided segmentation techniques 

Figure 6 - Results of technique based 
on layer decomposition using a single 
image introduced in [31].
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typically employ protocols involving growing, 
splitting, and merging individually or in suitable 
combinations. We focused on watershed 
transformation that can be classified as a 
region-based segmentation approach. The 
main concept of this algorithm is derived from 
geography. The watershed lines determine 
boundaries which separate image regions. The 
watershed transforms computes catchment 
basins and ridgelines (also known as watershed 
lines), where catchment basins corresponding to 
image regions and ridgelines relating to region 
boundaries. We experimented the Meyer’s 
watershed algorithm [43] consisting of the 
following basic steps: 

1. Add neighbors to priority queue, sorted 
by value
2. Choose local minima as region seeds
3. Take top priority pixel from queue 

a. If all labeled neighbors have same 
label, assign to pixel
b. Add all non-marked neighbors

4. Repeat step 3 until finished.

Watershed segmentation possesses several 
advantages such as ability to provide close 
contours even in low contrast regions with 
weak boundaries, and means to serve as a 
stable initialization for more sophisticated 
segmentation mechanisms. On the cons, the 
output achieved by a watershed transform 
is often oversegmented and requires post-
processing schemes involving region merging 
and markers (connected components branding 
flat regions or objects in images) to yield a more 
suitable out-come.
A major portion of segmentation practices can be 
viewed as being either spatially blind or spatially 
guided. However, there are several techniques 
that may not distinctly fall in any of these two 
categories but provide good results. Between 
these techniques we focused on methods using 
specialized image features as histogram of 
oriented gradients (HOG), local binary patterns 

(LBP), maximally stable extremal region (MSER). 
We experimented MSER a technique proposed 
by [44] to find correspondences between 
image elements from two images with different 
viewpoints. MSER technique produces blobs, 
i.e. highly featured regions in the sense that 
they are stable and salient, and have multi-
scale structure. MSER regions are connected 
areas characterized by almost uniform intensity, 
surrounded by contrasting background. They are 
constructed through a process of trying multiple 
thresholds. When compared to the algorithms 
which rely on intensity extrema, MSER is more 
stable because it stems from stability extrema 
[45]. We referred to [46] which propose a new 
multi-scale image segmentation approach 
based on MSER. The approach can segment 
natural images without any user intervention. 
It accomplishes the segmentation by collecting 
MSERs and then rearranging them onto the 
image plane in an appropriate order that would 
generate desired segmentation of whole image. 
To denoise and smooth the region boundaries, 
hierarchical morphological operations and an 
optimal sequence of them are developed.
At the end, we processed segmented images 
with algorithms for single image specular 
removal that in the original formulation not 
present this extra-step and tested using 
the whole image. Results adding image 
segmentation are in Figure 7. Although some 
improvements have been observed, however, 
the road ahead remains long and hard.
After these fails, we tried another strategy: the 
use of techniques employing multiple images. 
Multi-image systems exploit information 
contained in an image sequence of the same 
scene taken either from different points of 
view or with different light information. Such 
sequence contains much more information 
on specularity than a single image since the 
specular reflection varies through the images. In 
the case of a sequence of images taken from 
different points of view, scene points showing 
specular reflection in a view can exhibit purely 

Figure 7 - Color based segmentation 
results on our reference image: (a) 
K-Means clustering technique; (b) 
region-based segmentation approach 
based on watershed transformation; 
(c) MSER based segmentation.
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diffuse reflection in other views. By matching 
specular pixels to their corresponding diffuse 
points in other views, it is possible to determine 
the diffuse components of the specularities. 
Some methods assume a fixed camera that is 
able to capture a set of images with different 
mixing of the layers through various means, 
e.g. rotating a polarized lens, changing focus, 
applying a flash, or using HDR techniques.
All these methods present many drawbacks 
in our context. The first three approach-es 
demonstrate good results, but the ability of 
controlling focal change, polarization, and flash 
is rarely possible. The third technique (HDR) 
appear more reliable to our field, not requiring 
specific equipment. Some studies of last years 
show accurate color-calibrated tone mapped 
HDR images [47,48], but the algorithms in 
the literature were not directly usable, and 
their limits are still uncertain. In particular, we 
discarded the most recent pipeline purposed in 
[49] to avoid an unclear all-in-one processing.
We developed a new HDR-based processing 
similar to that in [50]. Our goal is not only 
composing a single HDR from multiple color 
images with different exposure levels [51], 
but also reducing the color distortion during 
the tone mapping process. We capture HDR 
images of the scene in RAW file format, 
minimum camera image processing in the 
captured images, with and without inside a 
X-Rite Classic ColorChecker. The color checker 
is photographed under the same conditions and 
with the same exposure bracket as the hero 
shot. The calibration is performed using this 
single HDR image containing the X-Rite CCC, 

using reference values in the CIEXYZ space 
[52]. We generated the HDR image using the 
reconstruction technique proposed from [53] 
following the study of the performance bounds 
of [54]. We tonemapped the scene image with 
specular reflections, trying to minimize these 
effects and we applied the same setting to 
tonemap the image with the target, using the 
technique proposed in [55]. Finally, we applied 
the same processing of color calibration applied 
to the other LDR images. As you can see in 
Figure 5, final results are not very accurate and 
obtained pictures are impossible to merge with 
the whole pipeline, where LDR images have 
been used. Having an HDR checker shot may 
not always return accurate or desirable results 
since the tone mapping software can sometimes 
create colorcasts. HDR tone mapping operators 
often exaggerate color-casts in a scene, and 
include some version of local adaptation, so 
the color checker is really just a starting point. 
To measure the error of the color corrected 
HDR image of ColorChecker, we calculate the 
average color difference DE between the color-
corrected HDR image and the checker reference 
data (Figure 5).
A different approach to reflections separation 
consists in the exploitation of motion between 
multiple images [56, 57]. By analyzing the movie 
sequence, diffuse and specular components 
can be recovered. These approaches produce 
good results, but the constraint on scene 
geometry and assumed motion of the camera 
limit the type of scenes that can be processed. 
A second problem of these techniques is the 
indefinite number of images to be employed to 

Figure 8 - On the left color calibrated 
LDR image, on the right color 
calibrated HDR image. In the middle: 
color difference DEab; top color 
calibrated LDR image, below color 
calibrated HDR image.
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the purpose. The number of images to be used 
depends on working conditions, such as the 
distribution of ambient lighting sources and the 
viewing direction of the camera. Furthermore, 
multiple images increase both the processing 
time and storage. In order to reduce the number 
of images to be used, stereo images [58] and 
flash/no-flash image pairs [59, 60] have shown 
to provide enough information for solving the 
dichromatic reflection problem. Lin et al. [61] 
present a method based on color analysis 
and multi-baseline stereo that makes use of 
sequence of images to achieve the separation of 
specular reflection. Nevertheless, extra devices 
and equipment were incorporated. This makes 
very hard the practical applications of these 
techniques to the urban context.
A second problem in the multi-image area 
concerns image alignment. The use of local 
invariant features [2] is a powerful solution 
because these features are robust to typical 
appearance variations (illumination, blur, 
compression), and a wide range of 3D 
transformations. Initial feature matching is often 
followed by geometric filtering steps, which 
yield very reliable matches of 3D rigid scenes 
[62]. These operations are nothing more than 
the first part of our photogrammetric workflow, 
in this way appears easy to embed the specular 
removal process in the whole pipeline. Along 
this line [63, 64] proposed an image processing 
pipeline based on the use of local invariant 
features for building an image of a painting from 
a set of photographs taken with a hand-held 
camera in a non-controlled environment where 
highlights may appear. The steps of the pipeline 
are the following: (a) SIFT, (b) RANSAC, (c) 
segmentation of bursts, (d) subpixel resampling, 
(e) blur weighting, (f) weighted average fusion, 
(g) ASIFT, (h) distortion correction by polynomial 
approximation and subpixel resampling, (i) 
histogram specification, (j) vector median of 
gradients, and (k) Poisson fusion. To apply 
this workflow in our field the main drawback 
concerns the original assumption of like-planar 
surfaces and a non-simple pre-processing 
image alignment that limits the benefits to 
color fidelity without improving the results of 
photogrammetric pipeline.
Same problem appears with [65], where 
is illustrated a robust technique for layer 
separation from multiple images which 
exploits the correlation of the transmitted layer 
across multiple images, and the sparsity and 
independence of the gradient fields of the two 
layers. This solution need a pre-processing 
technique similar to [64] to accurately align 
images, and manual interaction to initialize the 
process.
Multi-image techniques and alignment using 
local and global features were also the last 

frontier of layer separation techniques, which 
could be viewed as a superset of dichromatic 
approach. Above all these attempts to solve 
major lacks of the single image method [66]: 
the user involvement and the limited number 
of cases where it’s possible to obtain great 
quality of results. The basic assumption of these 
algorithms is that interference decomposition 
should result in component images having fewer 
edges and corners than the original image. In [67], 
Levin and Weiss considered a simpler problem, 
in which the user provides labels of component 
images for a number of critical gradients in the 
interference image. However, the problem is still 
ill-conditioned. A sparsity prior was introduced, 
which states that the output of any derivative 
filter tends to be sparse. More explicitly, the 
histogram of the output of a derivative filter is 
peaked at zero and fall off rapidly out to the two 
extreme ends of the histogram. A probability 
function characterized by the sparsity prior was 
constructed, which served as the criterion of 
interference decomposition.
Features of multi-image specular removal 
techniques depicted their use as the most 
appropriate starting point for our use case.

3. SPECULAR REFLECTION 
    REMOVAL METHOD

Separating reflections from a single image is an 
ill-posed problem, as it requires extracting two 
layers from one image: in absence of additional 
knowledge about the scene being viewed there 
are an infinite number of valid decompositions. 
To make the problem tractable additional 
information, either supplied from the user or 
from multiple images, is required.
Our approach is an improved and calibrated 
version of the pipeline set by [16] and [66, 
67]. Moreover [66, 67] offer a solution to layer 
separation problem using a single image that 
needs to be manually labeled and where different 
labels represent background or reflection parts 
of the image itself. Following results on the 
statistics of natural images, these authors used 
a sparsity prior over derivative filters. They first 
approximate this sparse prior with a Laplacian 
prior obtaining a simple, convex optimization 
problem. Then they use the solution with the 
Laplacian prior as an initialization for a simple, 
iterative optimization for the sparsity prior that 
efficiently find the most probable decompositions 
using linear programming. The results show a 
clear advantage in a technique that is based 
on natural scene statistics rather than one that 
assume a Gaussian distribution. Beside effective 
results, the developed technique has a very 
strong constraint: it requires user intervention 
to label the image manually. To remove the 
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Figure 9 - Layer separation pipeline.

need for user markup, [16] suggest examining 
the relative motion in a small set (e.g. 3-5) of 
images to label gradients as either reflection 
or background gradients in an automatic way. 
First, the images are aligned using SIFT Flow 
[15]. Gradient variations are examined among 
the image set. Gradients with more variation are 
assumed to belong to the reflection component 
while constant gradients are assumed to belong 
to the background component. The input of [16] 
approach is a small set of k images of the same 
subject taken from slightly varying viewpoints. 
Authors assume that the background dominates 
in the mixture image and the images are related 
by a warping, such that the background is 
registered and the reflection layer is changing. 
This relationship can be expressed as:

where        is the    -th mixture image,                                                 
                                       are warping functions 
caused by the camera viewpoint change with 
respect to a reference image.
Pipeline steps are then, as in Figure 6:
A. For each image:

• Warping functions estimation. It is 
accomplished by distorting the input image 
to the reference image using SIFT Flow 
algorithm - an extension of the original 
SIFT Lowe technique [2] - allows extracting 
keypoints from an image and assigning 
robust descriptors to them for every image 
pixel. These descriptors are matched to 
those of another image in order to produce 
a list of pairs of points. This list of matching 
points is used to estimate the parameters of 
the transformation-warping vector between 
the two images. A robust estimation 
method - RANSAC - is used to automatically 
reject wrong matches before computing the 

(2)

transformation.
• Edge separation: the presence of a static    
IB in the image set allows the identification 
of gradient edges of the background layer 
IB and edges of the changing reflection 
layers IRi . More specifically, edges in IB are 
assumed to appear every time in the image 
set while the edges in the reflection layer 
IRi are assumed to vary across the set. This 
means edges can be identified evaluating 
the frequency of a gradient appearing at 
a particular pixel across the aligned input 
images.
• Layer Reconstruction: after labeling edges 
as background or reflection, the two layers 
are reconstructed using an optimization 
technique that imposes a sparsity prior on 
the separated layers as described by [66, 
67].

B. Single images results combination. As in the 
original paper, we assume that the minimum 
value across all recovered background layers 
may be a proper approximation of the true 
background. As such, the last step is to take the 
minimum of the pixel value of all reconstructed 
background images as the final recovered 
background, as follows:

We iterate the original pipeline [16] for each 
initial image, as all the images were containing 
useful information for 3D reconstruction and 
all of them needed to be processed in our 
photogrammetric general pipeline.
Our photo datasets were mainly containing 
pictures of porticos. This issue increases the 
complexity of the problem, since this kind of 
photos is characterized by very high contrasts, 
backlight, overexposed areas and underexposed 

(3)



50 

Cultura e Scienza del Colore - Color Culture and Science | 07 | 2017 | 39 - 57  

Apollonio F. I., Ballabeni A., Gaiani M.      

ISSN 2384-9568

DOI: 10.23738/ccsj.i72017.04

ones (see Figure 3). This problem has been 
address working on the separation thresholds 
with which gradients are identified as belonging 
to the background or the reflection layers.

4. DISCUSSION AND RESULTS

In Figures 10, 11, 12 are the results of the use of 
our method to the different case of shop window 
and polished floor. From the point of view of the 
use inside the whole photogrammetric pipeline, 
the use of reconstructed layer separated 
images, leads to a strong improvement if 
compared to the use of original highlighted 
images, and we consider the study as final. 
Results in Figures 13, 14 and Table 1, where are 
reported typical parameters addressing quality 

in photogrammetric processes demonstrate our 
affirmation.
Moreover, even if results reconstructed images 
apparently show many approximations and 
artifacts, images are evidently good enough 
to be processed through the whole pipeline 
as the software, assigning color per vertex, 
tends to discard the re-maining highlighted 
surfaces. Effectively, if we analyze separately 
the layer separation results we can see that 
we just begin a long road. The key problem is 
in the warping step, with the estimation of the 
warping functions,       , to register the input 
to the reference image. For our purposes, we 
use a combination of SIFT Flow and RANSAC 
to register a pair of images by a homography. 
This solution computes descriptors densely (i.e. 

Figure 10 - Example of separation of 
background IB and reflection IR layers 
separation results: shop windows.
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for every pixel), instead of sparsely, to have an 
improved registration.
However, the planarity constraint often leads to 
reconstruct image regions slightly misaligned, 
especially when the scene presents elements 
on different planes, that is very often our case. 
Traditional dense correspondence method like 
optical flow, that are based on image intensity, 
even with our assumption that the background 
should be more prominent than the reflection 
layer, gave poor performance due to the reflection 
interference. However, images with very strong 
reflectance can produce poor alignment as SIFT 
Flow may attempt to align to the foreground, 
which is changing. This will cause problems in 
the subsequent layer separation. While these 
failures can often be handled by cropping the 

image or simple user input, it is a notable issue.
A second issue concern large displacement 
between images, moreover usual in our case 
as our sequence of images are from a photo 
camera and from well-spaced viewpoints. 
Optical flow techniques are closely related to 
motion estimation and motion compensation 
from sequence of frames and were developed 
for video se-quences where displacements 
between frames are usually limited. A basic 
assumption is then the local smoothness 
assumption. It is usually incorporated into a 
joint energy based regularization that rates 
data consistency together with the smoothness 
in a variational setting of the flow. One major 
drawback of this setting is that fast minimization 
techniques usually rely on local linearization of 

Figure 11 - Example of separation 
of background IB and reflection 
IR layers separation results: shop 
windows & porticoes.
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the data term and thus can adapt the motion 
field only very locally. Hence, these methods 
have to use image pyramids to deal with large 
displacements [68]. In practice, this fails in 
cases where the determined motion on a lower 
scale is not very close to the correct motion of a 
higher scale. Also, the use of purely data based 
techniques like approximate nearest neighbor 
fields [69] (ANNF) and sparse descriptor matches 
[70] allow an efficient global search for the best 
match on the full image resolution. However, 
sparsity causes local gaps in the motion field 
that must be filled. 
Another challenging issue is when the 
background scene has large homogeneous 

Figure 12 - Example of separation of 
background IB and reflection IR layers 
separation results: marble pavements.

Figure 13 - Final 3D model of our 
automatic photogrammetric pipeline. 
Above: using the highlighted images; 
below: using the layer separated 
images.

regions. In such cases there are no edges to be 
labeled as background. This makes subsequent 
separation challenging, especially when the 
reflection interference is weak but still visually 
noticeable.
Finally, a problem that emerges when applying 
dense descriptors is invariance [67]; unlike 
interest points, which allow for some estimation 
of local scale and orienta-tion, on arbitrary 
image locations scale estimation is not obvious. 
This is a significant issue in our context, because 
generally images have not a clear foreground 
and background, and building edges sometime 
are oblique in respect to the picture plane. For 
this reason, in the future we will investigate 
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Figure 14 - Final 3D model of our 
automatic photogrammetric pipeline. 
Above: using the highlighted images; 
below: using the layer separated 
images.

Without specular removal With specular removal

Oriented images 63/67 64/67
PBA quality 0.130 0.087
Points from more than 3 cameras 101751 114618
Dense point cloud 12112000 14107000
Point on image _DSC3201 14888 2202
Inlier matches 01_02 7227 7435
Time matching (sec) 62 1

further scale problem.
To address these problems, we experimented 
some recent techniques appearing the most 
reliable between the many solutions developed 
in the last years.
To face typical invariance and background/
foreground problems, we implemented a 
generalized image matching algorithm called 
DAISY Filter Flow (DFF) [71]. Fol-lowing the 
same spirit of the SIFT Flow authors developed 
an algorithm achieving much more robust 
performance in efficiently matching images of 
challenging non-rigid photometric and geometric 
variations, or across different scenes than the 
ex-isting techniques. Our approach is built upon 
a few established techniques but also extends 
them, which are 1) DAISY descriptors [72], 2) 

filter-based efficient flow field inference, and 3) 
the PatchMatch fast search [73]. Inspired by the 
PatchMatch Filter (PMF) work [73], it generalizes 
the PMF method in two important ways: DAISY 
descriptors are employed and extended for 
general image matching; to search across 
scales and rotations beyond just translations. 
As a result, DFF algorithm allows performing 
spatially regularized, dense descriptor-based 
correspondence field estimation efficiently in 
a high-dimensional space. Being able to do so 
explains the key advantages of the DFF method 
in both matching robustness and computational 
efficiency. Results are in Figure 15.
A second attempt was made addressing the 
treatment of scale-invariance. We imple-mented 
Scalemap [74], a very recent algorithm aiming 

Figure 15 - Separation of background 
IB and reflection IR layers separation 
results using [72] instead of SIFT Flow 
in our solution: shop window of figure 
10.

Table 1 - Photogrammetric results for 
the porticoes dataset
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to deal with the large-scale differences in 
different image locations. Authors demonstrated 
that scales estimated in sparse interest points 
may be propagated to neighboring pixels where 
this information cannot be reliably determined. 
In detail, they presented and implemented three 
different means for propagating this information: 
using only the scales at detected interest points 
(geometric propagation), using the underlying 
image infor-mation to guide the propagation of 
this information across each image, separately 
(image-aware propagation); and using 
both images simultaneously (match-aware 
propagation). Each of these methods considers 
progressively more information in order to 
more reliably propagate scales. We tested this 
approach and results are in Figure 16.
Finally, we tested Edge-Preserving Interpolation 
of Correspondences (EpicFlow), a novel state-
of-the-art optical flow estimation method 
particularly suitable to approach large 
displacement of objects in subsequent images 
[75].
EpicFlow computes a dense correspondence field 
by performing a sparse-to-dense interpolation 
from an initial sparse set of matches, leveraging 
contour cues using an edge-aware geodesic 
distance. The approach builds upon the 
assumption that contours often coincide with 

motion discontinuities and then it is easy to 
handle occlusions and motion boundaries. The 
resulting dense correspondence field is fed as 
an initial optical flow estimate to a one-level 
variational energy minimization initialized with 
the dense matches. Results are in Figure 17. 
Comparing Figures 10, 15, 16, 17 we could 
summarize that tested approach achieves 
similar performance as the SIFT Flow method 
in our case with slight improvements relative to 
the specific issue addressed. These results show 
that substantial improvements are possible 
in the future essentially trying to combine the 
individual effects in a global solution.
A last remark is related to the computational 
complexity of the method. Currently, the 
main problem concerns image warping that 
is a very expensive process, both time and 
memory consuming, often needing half hour 
and more than 128 Gb of RAM to compute our 
14 Mpx images. We estimated that increasing 
parallelization should heavily affect time and 
computational resources yet maintaining 
consistency with the whole photogrammetric 
pipeline.

Figure 16 - Separation of background 
IB and reflection IR layers separation 
results using [75] instead of SIFT Flow 
in our solution: shop window of figure 
10.

Figure 17 - Separation of background 
IB and reflection IR layers separation 
results using [75] instead of SIFT Flow 
in our solution: shop window of figure 
10.



 55

Cultura e Scienza del Colore - Color Culture and Science | 07 | 2017 | 39 - 57

Highlight and Specular reflection removal in photogrammetric techniques applied to Architectural Heritage 3D modeling 

ISSN 2384-9568

5. CONCLUSIONS

In this paper, we faced the problem of specular 
reflections, an inevitable effect in AH urban 
environment, in the context of automatic 
photogrammetry of AH 3D reconstruction and 
architectural modeling.
After careful evaluation of existing solutions and 
their applicability to our case study, we modeled 
the problem as layers separation problem, 
developing a solution completely integrated in 
the automatic photogrammetric pipeline. We 
reuse existing data to arrange new results using 
a multi-image technique, obtained improving 
and calibrating the pipeline set by [16] and [66, 
67]. We iterate the original pipeline [16] for each 
initial image, as all the images were containing 
useful information for 3D reconstruction and 
all of them needed to be processed in our 
photogrammetric general pipeline.
The process of acquisition of the images to get 
the finished 3D model is therefore unique and 
the process for acquiring and visualizing the 
correct perceived color is fully integrated with 
the process of shape reconstruction.
From the point of view of the use inside the 
whole photogrammetric pipeline, the use of 
reconstructed layer separated images, leads to 
a strong improvement in shape reconstruction 
if compared to the use of original highlighted 
images, because unwanted effects as those in 
Figure 1 completely disappears.
Conversely results concerning diffuse color 
reconstruction are quite limited due to 
imprecision of the techniques existing to 
estimate of the warping function.
At time the best solution possible in our case to 
model diffuse color is to select an image where 
specular effect not appears or are limited and 
map the color directly from it. Future works will 
be done in this area finding warping function 
more accurate.
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