Color segmentation and neural networks for automatic graphic relief of the state of conservation of artworks
DOI:
https://doi.org/10.23738/CCSJ.120201Keywords:
Multispectral images, Segmentation algorithms, Image analysis, Shape representation and analysis, Cultural heritage, Raster to vector, Neural networksAbstract
This paper proposes a semi-automated methodology based on a sequence of analysis processes performed on multispectral images of artworks and aimed at the extraction of vector maps regarding their state of conservation. The graphic relief of the artwork represents the main instrument of communication and synthesis of information and data acquired on cultural heritage during restoration. Despite the widespread use of informatics tools, currently, these operations are still extremely subjective and require high execution times and costs. In some cases, manual execution is particularly complicated and almost impossible to carry out. The methodology proposed here allows supervised, partial automation of these procedures avoids approximations and drastically reduces the work times, as it makes a vector drawing by extracting the areas directly from the raster images. We propose a procedure for color segmentation based on principal/independent component analysis (PCA/ICA) and SOM neural networks and, as a case study, present the results obtained on a set of multispectral reproductions of a painting on canvas.
References
Amura, A., et al (2019), 'Proposta di una Metodologia Semi Automatica Basata sull’Analisi dell’Immagine Digitale Finalizzata alla Creazione e la Gestione della Documentazione Grafica nei Restauri', XVII Congresso Nazionale IGIIC, Matera, Italy, 10-12 October 2019.
Cardoso, J.F. (1998), 'Blind Signal Separation: Statistical Principles', Proc. IEEE, Vol. 86, No. 10, pp. 2009-2025.
Cichocki, A., Amari, S.-I., (2002), 'Adaptive Blind Signal and Image Processing', Wiley, New York.
Danese, M., Sileo, M., Lasaponara, R., Masini, N. (2019) 'Proximal Remote Sensing e spatial Analysis per la conservazione delle pitture parietali pompeiane. Il caso del Gymnasium' Archeomatica, Anno X- Numero 2, Giugno 2019, pp. 12-18.
Dyer, J. et al (2013). Multispectral Imaging in Reflectance and Photo- induced Luminescence modes: a User Manual. Web publication/site, Online: European CHARISMA Project.
Grifoni E., Campanella B., Legnaioli S., Lorenzetti G., Marras L., Pagnotta S., Palleschi V., Poggialini F., Salerno E., Tonazzini A. (2019) 'A new infrared true-color approach for visible-infrared multispectral image analysis', ACM J Comp. Cultural Heritage 12: pp. 8:1–8:11.
Grilli, E., Petrucci, G., Remondino, F. (2019). Classification of 3D Digital Heritage. Journal of Remote Sensing. 11. 10.3390/rs11070847.
Hyvärinen, A., Karhunen, J., Oja, E. (2001), 'Independent Component Analysis', New York, Wiley.
Hyvärinen, A., Oja, E. (2000), 'Independent component analysis: algorithms and applications', Neural Networks 13, pp. 411- 430.
Koh, J., Suk, M., Bhandarkar, S. M. (1995), 'A multilayer self-organizing feature map for range image segmentation', Neural Networks 8, pp. 67– 86.
Kohonen, T. (1998.), 'The self-organizing map', Neurocomputing 21, pp. 1–6.
Mabrouk, M., Karrar A., Sharawi A. (2013), 'Support Vector Machine Based Computer Aided Diagnosis System for Large Lung Nodules Classification', Journal of Medical Imaging and Health Informatics 3, pp.214-220.
Riccomini, M. (2012), 'Donato Creti. Le opere su carta. Catalogo ragionato', collana: Archivi di Arte antica. Umberto Allemandi & C., ISBN: 88-422-1980-0 - EAN: 9788842219804
Rumelhart, D. E., Zipser, D. (1985), 'Feature discovery by competitive learning', Cogn. Sci. 9, pp.75–112.
Sacco, F. (2002), 'Sistematica della documentazione e progetto di restauro', Bollettino ICR, N.S. 4(1), pp. 28-54.
Tonazzini, A., Salerno, E., Abdel-Salam, Z. A., Harith, M. A., Marras, L., Botto, A., Campanella, B., Legnaioli, S., Pagnotta, S., Poggialini, F., Palleschi, V. (2019b), 'Analytical and mathematical methods for revealing hidden details in ancient manuscripts and paintings: A review', J. Adv. Res. 17, pp. 31–42.
Tonazzini, A., Salerno, E., Bedini, L. (2007), 'Fast correction of bleed- through distortion in grayscale documents by a blind source separation technique', Int. J. Document Analysis and Recognition 10, pp. 17-25.
Tonazzini, A., Savino, P., Salerno, E., Hanif, M., Debole, F. (2019a) 'Virtual restoration and content analysis of ancient degraded manuscripts' Int. J. Inf. Sci. & Technol. 3, no. 5.
Uriarte, E. A., Martín, F. D. (2005), 'Topology preservation in SOM ' J. Appl. Math. Comput. Sci. 1, pp.19–22.
Vallet, J.M., De Luca, L., Feillou, M. (2012) 'Une nouvelle approche spatio-temporelle et analytique pour la conservation des peintures murales sur le long terme', In Situ [En ligne], 19 | URL: http://insitu.revues.org/9829.
Yeo, N. C., Lee, K. H., Venkatesh, Y. V, Ong, S. H. (2005), 'Colour image segmentation using the self-organizing map and adaptive resonance theory', Image Vis. Comput. 23, 1060–1079.
Zhao Y., (2008), 'Image segmentation and pigment mapping of cultural heritage based on spectral imaging'. Thesis. Rochester Institute of Technology. Available from https://scholarworks.rit.edu/theses/3029 [accessed Jan 20 2020].
Downloads
Published
How to Cite
Issue
Section
License
The "Cultura e Scienza del Colore - Color Culture and Science" journal is registered at the Court of Milan at n.233 of 24.06.2014.
The journal is an open access journal, free for readers and authors and has joined ROAD, the Directory of Open Access scholarly Resources, since 2014. Articles published in the “Cultura e Scienza del Colore - Color Culture and Science" journal are open access articles, distributed under the terms and conditions of the Creative Commons Attribution License (CC BY). The copyright is retained by the author(s).